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Abstract. We consider the problem of synthesizing digital designs from their LTL

specification. In spite of the theoretical double exponential lower bound for the gen-
eral case, we show that for many expressive specifications ofhardware designs the
problem can be solved in timeN3, whereN is the size of the state space of the design.
We describe the context of the problem, as part of the Prosyd European Project which
aims to provide a property-based development flow for hardware designs. Within this
project, synthesis plays an important role, first in order tocheck whether a given
specification is realizable, and then for synthesizing partof the developed system.
The class ofLTL formulas considered is that of Generalized Reactivity(1) (general-
ized Streett(1)) formulas, i.e., formulas of the form:

(0 1 p1 ∧ · · · ∧ 0 1 pm) → (0 1 q1 ∧ · · · ∧ 0 1 qn)

where eachpi, qi is a boolean combination of atomic propositions. We also consider
the more general case in which eachpi, qi is an arbitrary pastLTL formula over
atomic propositions.
For this class of formulas, we present anN3-time algorithm which checks whether
such a formula is realizable, i.e., there exists a circuit which satisfies the formula
under any set of inputs provided by the environment. In the case that the specifica-
tion is realizable, the algorithm proceeds to construct an automaton which represents
one of the possible implementing circuits. The automaton iscomputed and presented
symbolically.

1 Introduction

One of the most ambitious and challenging problems in reactive systems construction is
the automatic synthesis of programs and (digital) designs from logical specifications. First
identified as Church’s problem [Chu63], several methods have been proposed for its so-
lution ([BL69], [Rab72]). The two prevalent approaches to solving the synthesis problem
were by reducing it to the emptiness problem of tree automata, and viewing it as the solution
of a two-person game. In these preliminary studies of the problem, the logical specification
that the synthesized system should satisfy was given as an S1S formula.

This problem has been considered again in [PR89a] in the context of synthesizing reac-
tive modules from a specification given in Linear Temporal Logic (LTL ). This followed two
previous attempts ([CE81], [MW84]) to synthesize programsfrom temporal specification
which reduced the synthesis problem to satisfiability, ignoring the fact that the environment

⋆ This research was supported in part by the Israel Science Foundation (grant no.106/02-1), Euro-
pean community project Prosyd, the John von-Neumann Minerva center for Verification of Reac-
tive Systems, NSF grant CCR-0205571, ONR grant N00014-99-1-0131, and SRC grant 2004-TJ-
1256.



should be treated as an adversary. The method proposed in [PR89a] for a givenLTL spec-
ificationϕ starts by constructing a Büchi automatonBϕ, which is then determinized into
a deterministic Rabin automaton. This double translation may reach complexity of double
exponent in the size ofϕ. Once the Rabin automaton is obtained, the game can be solved
in time nO(k), wheren is the number of states of the automaton andk is the number of
accepting pairs.

The high complexity established in [PR89a] caused the synthesis process to be identi-
fied as hopelessly intractable and discouraged many practitioners from ever attempting to
use it for any sizeable system development. Yet there exist several interesting cases where,
if the specification of the design to be synthesized is restricted to simpler automata or partial
fragments ofLTL , it has been shown that the synthesis problem can be solved inpolynomial
time. Representative cases are the work in [AMPS98] which presents (besides the gener-
alization to real time) efficient polynomial solutions (N2) to games (and hence synthesis
problems) where the acceptance condition is one of theLTL formulas0 p, 1 q, 0 1 p,
or 1 0 q. A more recent paper is [AT04] which presents efficient synthesis approaches
for theLTL fragment consisting of a boolean combinations of formulas of the form 0 p.

This paper can be viewed as a generalization of the results of[AMPS98] and [AT04]
into the wider class ofgeneralized Reactivity(1) formulas (GR(1)), i.e. formulas of the form

(0 1 p1 ∧ · · · ∧ 0 1 pm) → (0 1 q1 ∧ · · · ∧ 0 1 qn) (1)

Following the developments in [KPP05], we show how any synthesis problem whose spec-
ification is a GR(1) formula can be solved in timeN3, whereN is the size of the state space
of the design. Furthermore, we present a (symbolic) algorithm for extracting a design (pro-
gram) which implements the specification. We make an argument that the class of GR(1)
formulas is sufficiently expressive to provide complete specifications of many designs.

This work has been developed as part of the Prosyd project (see www.prosyd.org)which
aims at the development of a methodology and a tool suit for the property-based construc-
tion of digital circuits from their temporal specification.Within the prosyd project, synthe-
sis techniques are applied to check first whether a set of properties isrealizable, and then
to automatically produce digital designs of smaller units.

2 Preliminaries

2.1 Linear Temporal Logic

We assume a countable set of Boolean variables (propositions)V . LTL formulas are con-
structed as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 2 ϕ | ϕUϕ

As usual we denote¬(¬ϕ∨¬ψ) byϕ∧ψ, TUϕ by 1 ϕ and¬ 1 ¬ϕ by 0 ϕ. A formula
that does not include temporal operators is aBoolean formula.

A modelσ for a formulaϕ is an infinite sequence of truth assignments to propositions.
Namely, ifP ′ is the set of propositions appearing inϕ, then for every finite setP such that
P ′ ⊆ P , a word in(2P )ω is a model. We denote byσ(i) the set of propositions at position
i, that isσ = σ(0), σ(1), . . .. We present an inductive definition of when a formula holds
in modelσ at positioni.

– Forp ∈ P we haveσ, i |= p iff p ∈ σ(i).
– σ, i |= ¬ϕ iff σ, i 6|= ϕ

– σ, i |= ϕ ∨ ψ iff σ, i |= ϕ or σ, i |= ψ

– σ, i |= 2 ϕ iff σ, i+ 1 |= ϕ

– σ, i |= ϕUψ iff there existsk ≥ i such thatσ, k |= ψ andσ, j |= ϕ for all j, i ≤ j < k



For a formulaϕ and a positionj ≥ 0 such thatσ, j |= ϕ, we say thatϕ holds at position
j of σ. If σ, 0 |= ϕ we say thatϕ holdsonσ and denote it byσ |= ϕ. A set of modelsL
satisfiesϕ, denotedL |= ϕ, if every model inL satisfiesϕ.

We are interested in the question ofrealizabilityof LTL specifications [PR89b]. Assume
two sets of variablesX andY. Intuitively X is the set of input variables controlled by the
environment andY is the set of system variables. With no loss of generality, weassume that
all variables are Boolean. Obviously, the more general casethatX andY range over arbi-
trary finite domains can be reduced to the Boolean case.Realizabilityamounts to checking
whether there exists anopen controllerthat satisfies the specification. Such a controller can
be represented as an automaton which, at any step, inputs values of theX variables and
outputs values for theY variables. Below we formalize the notion of checking realizability
andsynthesis, namely, the construction of such controllers.

Realizability forLTL specifications is 2EXPTIME-complete [PR90]. We are interested
in a subset ofLTL for which we solve realizability and synthesis in polynomial time. The
specifications we consider are of the formϕ = ϕe → ϕs. We require thatϕα for α ∈ {e, s}
can be rewritten as a conjunction of the following parts.

– ϕα
i - a Boolean formula which characterizes the initial states of the implementation.

– ϕα
t - a formula of the form

∧

i∈I 0 Bi where eachBi is a Boolean combination of
variables fromX ∪ Y and expressions of the form2 v wherev ∈ X if α = e, and
v ∈ X ∪ Y otherwise.

– ϕα
g - a formula of the form

∧

i∈I 0 1 Bi where eachBi is a Boolean formula.

It turns out that most of the specifications written in practice can be rewritten to this format4.
In Section 7 we discuss also cases where the formulasϕα

g have also sub-formulas of the
form 0 (p → 1 q) wherep andq are Boolean formulas, and additional cases which can
be converted to the GR(1) format.

2.2 Game Structures

We reduce the realizability problem of anLTL formula to the decision of winner in games.
We consider two-player games played between a system and an environment. The goal
of the system is to satisfy the specification regardless of the actions of the environment.
Formally, we have the following.

A game structure(GS) G : 〈V,X ,Y, Θ, ρe, ρs, ϕ〉 consists of the following compo-
nents.

• V = {u1, . . . , un} : A finite set of typedstate variablesover finite domains. With
no loss of generality, we assume they are all Boolean. We define astates to be an
interpretation ofV , assigning to each variableu ∈ V a values[u] ∈ {0, 1}. We denote
byΣ the set of all states. We extend the evaluation functions[·] to Boolean expressions
overV in the usual way. Anassertionis a Boolean formula overV . A states satisfies
an assertionϕ denoteds |= ϕ, if s[ϕ] = true. We say thats is aϕ-state ifs |= ϕ.
• X ⊆ V is a set ofinput variables. These are variables controlled by the environment.

LetDX denote the possible valuations to variables inX .
• Y = V \ X is a set ofoutput variables. These are variables controlled by the system.

LetDY denote the possible valuations for the variables inY.
• Θ is the initial condition. This is an assertion characterizing all the initial states ofG.

A state is calledinitial if it satisfiesΘ.

4 In practice, the specification is usually given in this format. The specification is a collection of
assumptions and requirements with the semantics that all assumptions imply all requirements.
Every assumption or requirement is usually of a very simple formula similar to the required form.



• ρe(X ,Y,X ′) is the transition relation of the environment. This is an assertion, relating
a states ∈ Σ to a possible next input valueξ′ ∈ DX , by referring to unprimed copies
of X andY and primed copies ofX . The transition relationρe identifies valuation
ξ′ ∈ DX as a possibleinput in states if (s, ξ′) |= ρe(X ,Y,X ′) where(s, ξ′) is the
joint interpretation which interpretsu ∈ V ass[u] and forv ∈ X interpretsv′ asξ′[v].
• ρs(X ,Y,X ′,Y ′) is the transition relation of the system. This is an assertion, relating a

states ∈ Σ and an input valueξ′ ∈ DX to a next output valueη′ ∈ DY , by referring
to primed and unprimed copies ofV . The transition relationρs identifies a valuation
η′ ∈ DY as a possibleoutput in states reading inputξ′ if (s, ξ′,η′) |= ρs(V, V

′)
where(s, ξ′,η′) is the joint interpretation which interpretsu ∈ X ass[u], u′ asξ′[u],
and similarly forv ∈ Y.
• ϕ is the winning condition, given by anLTL formula.

For two statess ands′ of G, s′ is asuccessorof s if (s, s′) |= ρe ∧ ρs. We freely switch
between(s, ξ′) |= ρe andρe(s, ξ

′) = 1 and similarly forρs. A playσ of G is a maximal
sequence of statesσ : s0, s1, . . . satisfying initiality namelys0 |= Θ, andconsecution
namely, for eachj ≥ 0, sj+1 is a successor ofsj . LetG be anGS andσ be a play ofG.
From a states, the environment chooses an inputξ′ ∈ DX such thatρe(s, ξ

′) = 1 and the
system chooses an outputη′ ∈ DY such thatρs(s, ξ

′,η′) = ρs(s, s
′) = 1.

A play σ is winning for the systemif it is infinite and it satisfiesϕ. Otherwise,σ is
winning for the environment.

A strategyfor the system is a partial functionf : Σ+ ×DX 7→ DY such that ifσ =
s0, . . . sn then for everyξ′ ∈ DX such thatρe(sn, ξ

′) = 1 we haveρs(sn, ξ
′, f(σ, ξ′)) =

1. Let f be a strategy for the system, ands0 ∈ Σ. A play s0, s1, . . . is said to becompliant
with strategyf if for all i ≥ 0 we havef(s0, . . . , si, si+1[X ]) = si+1[Y], wheresi+1[X ]
andsi+1[Y] are the restrictions ofsi+1 to variable setsX andY, respectively. Strategyf is
winningfor the system from states ∈ ΣG if all s-plays (plays departing froms) which are
compliant withf are winning for the system. We denote byWs the set of states from which
there exists a winning strategy for the system. Astrategyfor player environment,winning
strategy, and thewinning setWe are defined dually. AGSG is said to bewinning for the
system if all initial states are winning for the system.

Given anLTL specificationϕe → ϕs as explained above and sets of input and output
variablesX andY we construct aGS as follows. Letϕα = ϕα

i ∧ ϕ
α
t ∧ ϕ

α
g for α ∈ {e, s}.

Then, forΘ we takeϕe
i ∧ ϕ

s
i . Let ϕα

t =
∧

i∈I 0 Bi, thenρα =
∧

i∈I τ(Bi), where the
translationτ replaces each instance of2 v by v′. Finally, we setϕ = ϕe

g → ϕs
g. We

solvethe game, attempting to decide whether the game is winning for the environment or
the system. If the environment is winning the specification is unrealizable. If the system
is winning, wesynthesizea winning strategy which is aworking implementationfor the
system as explained in Section 4.

2.3 Fair Discrete Systems

We present implementations as a special case offair discrete systems(FDS) [KP00]. An
FDSD : 〈V,Θ, ρ,J , C〉 consists of the following components.

• V = {u1, ..., un} : A finite set of Boolean variables. We define astates to be an
interpretation ofV . Denote byΣ the set of all states. Assertions overV and satisfaction
of assertions are defined like in games.
• Θ : The initial condition. This is an assertion characterizing all the initial statesof the

FDS. A state is calledinitial if it satisfiesΘ.
• ρ : A transition relation. This is an assertionρ(V, V ′), relating a states ∈ Σ to its
D-successors′ ∈ Σ.
• J = {J1, . . . , Jm} : A set of justice requirements(weak fairness). Each requirement
J ∈ J is an assertion which is intended to hold infinitely many times in every compu-
tation.



• C = {(p1, q1), . . . , (pn, qn)} : A set of compassion requirements(strong fairness).
Each requirement(p, q) ∈ C consists of a pair of assertions, such that if a computation
contains infinitely manyp-states, it should also hold infinitely manyq-states.

We define arun of theFDSD to be a maximal sequence of statesσ : s0, s1, ..., satisfying
the requirements of

• Initiality: s0 is initial, i.e.,s0 |= Θ.
• Consecution:For everyj ≥ 0, the statesj+1 is aD-successor of the statesj .

The sequenceσ being maximal means that eitherσ is infinite, orσ = s0, . . . , sk andsk

has noD-successor.
A run σ is defined to be acomputationof D if it is infinite and satisfies the following
additional requirements:

• Justice:For eachJ ∈ J , σ contains infinitely manyJ-positions, i.e. positionsj ≥ 0,
such thatsj |= J .
• Compassion:For each(p, q) ∈ C, if σ contains infinitely manyp-positions, it must

also contain infinitely manyq-positions.

We say that anFDSD implementsspecificationϕ if every run ofD is infinite, and every
computation ofD satisfiesϕ. An FDS is said to befairness-freeif J = C = ∅. It is called
a just transition system(JDS) if C = ∅.

In general, we useFDS’s in order to formalize reactive systems. When we formalize
concurrent systems which communicate by shared variables as well as most digital de-
signs, the ensuing formal model is that of aJDS (i.e., compassion-free). Compassion is
needed only in the case that the program uses built-in synchronization constructs such as
semaphores or synchronous communication.

For everyFDS, there exists anLTL formulaϕ
D

, called thetemporal semanticsof D
which fully characterizes the computations ofD. It can be written as:

ϕ
D

: Θ ∧ 0 (ρ(V, 2 V )) ∧
∧

J∈J

0 1 J ∧
∧

(p,q)∈C

(0 1 p→ 0 1 q)

whereρ(V, 2 V ) is the formula obtained fromρ(V, V ′) by replacing each instance of
primed variablex′ by theLTL formula2 x.
Note that in the case thatD is compassion-free (i.e., it is aJDS), then its temporal semantics
has the form

ϕ
D

: Θ ∧ 0 (ρ(V, 2 V )) ∧
∧

J∈J

0 1 J

It follows that the class of specifications we consider in this paper, as explained at the end
of Subsection 2.1, have the formϕ = ϕe → ϕs where eachϕα, for α ∈ {e, s}, is the
temporal semantics of anJDS. Thus, if the specification can be realized by an environment
which is aJDS and a system which is aJDS (in particular, if none of them requires com-
passion for their implementation), then the class of specifications we consider here are as
general as necessary. Note in particular, that hardware designs rarely assume compassion
(strong fairness) as a built-in construct. Thus, we expect most specifications to be realized
by hardware designs to fall in the class of GR(1).

3 µ-calculus and Games

In [KPP05], we consider the case of GR(1) games (called theregeneralized Streett(1)
games). In these games the winning condition is an implication between conjunctions of
recurrence formulas (0 1 ϕ whereϕ is a Boolean formula). These are exactly the types



of goals in the games we defined in Section 2. We show how to solve such games in cu-
bic time [KPP05]. We re-explain here how to compute the winning regions of each of the
players and explain how to use the algorithm to extract a winning strategy. We start with
a definition ofµ-calculus over game structures. We give theµ-calculus formula that char-
acterizes the set of winning states of the system. We explainhow we construct from this
µ-calculus formula an algorithm to compute the set of winningstates. Finally, by saving
intermediate values in the computation, we can construct a winning strategy and synthesize
anFDS that implements the goal.

3.1 µ-calculus over Games Structures

We defineµ-calculus [Koz83] over game structures. LetG: 〈V,X ,Y, Θ, ρe, ρs, ϕ〉 be a
GS. For every variablev ∈ V the formulasv and¬v areatomic formulas. Let V ar =
{X,Y, . . .} be a set ofrelational variables. Theµ-calculus formulas are constructed as
follows.

ϕ ::= v | ¬v | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 4 ϕ | 3 ϕ | µXϕ | νXϕ

A formulaψ is interpreted as the set ofG-states inΣ in which ψ is true. We write such
set of states as[[ψ]]eG whereG is the GS and e : V ar → 2Σ is an environment. The
environment assigns to each relational variable a subset ofΣ. We denote bye[X ← S] the
environment such thate[X ← S](X) = S ande[X ← S](Y ) = e(Y ) for Y 6= X . The set
[[ψ]]eG is defined inductively as follows5.

• [[v]]eG = {s ∈ Σ | s[v] = 1}
• [[¬v]]eG = {s ∈ Σ | s[v] = 0}
• [[X ]]eG = e(X)
• [[ϕ ∨ ψ]]eG = [[ϕ]]eG ∪ [[ψ]]eG
• [[ϕ ∧ ψ]]eG = [[ϕ]]eG ∩ [[ψ]]eG

• [[4 ϕ]]eG =

{

s ∈ Σ

∣

∣

∣

∣

∀x′, (s,x′) |= ρe → ∃y′ such that(s,x′,y′) |= ρs

and(x′,y′) ∈ [[ϕ]]eG

}

A states is included in[[4 ϕ]]eG if the system can force the play to reach a state in
[[ϕ]]eG. That is, regardless of how the environment moves froms, the system can choose
an appropriate move into[[ϕ]]eG.

• [[3 ϕ]]eG =

{

s ∈ Σ

∣

∣

∣

∣

∃x′ such that(s,x′) |= ρe and
∀y′, (s,x′,y′) |= ρs → (x′,y′) ∈ [[ϕ]]eG

}

A states is included in[[3 ϕ]]eG if the environment can force the play to reach a state
in [[ϕ]]eG. As the environment moves first, it chooses an inputx′ ∈ X such that for all
choices of the system the successors is in [[ϕ]]eG.

• [[µXϕ]]eG = ∪iSi whereS0 = ∅ andSi+1 = [[ϕ]]
e[X←Si ]
G

• [[νXϕ]]eG = ∩iSi whereS0 = Σ andSi+1 = [[ϕ]]
e[X←Si]
G

When all the variables inϕ are bound by eitherµ or ν the initial environment is not impor-
tant and we simply write[[ϕ]]G. In case thatG is clear from the context we write[[ϕ]].

Thealternation depthof a formula is the number of alternations in the nesting of least
and greatest fixpoints. Aµ-calculus formula defines a symbolic algorithm for computing
[[ϕ]] [EL86]. For aµ-calculus formula of alternation depthk, the run time of this algorithm
is O(|Σ|k). For a full exposition ofµ-calculus we refer the reader to [Eme97]. We often
abuse notations and write aµ-calculus formulaϕ instead of the set[[ϕ]].

In some cases, instead of using a very complex formula, it maybe more readable to use
vector notationas in Equation (2) below.

ϕ = ν

[

Z1

Z2

] [

µY (4 Y ∨ p ∧ 4 Z2)
µY (4 Y ∨ q ∧ 4 Z1)

]

(2)

5 Only for finite game structures.



Such a formula, may be viewed as the mutual fixpoint of the variablesZ1 andZ2 or equiv-
alently as an equal formula where a single variableZ replaces bothZ1 andZ2 and ranges
over pairs of states [Lic91]. The formula above characterizes the set of states from which
system can force the game to visitp-states infinitely often andq-states infinitely often. We
can characterize the same set of states by the following ‘normal’ formula6.

ϕ = νZ ([µY (4 Y ∨ p ∧ 4 Z)] ∧ [µY (4 Y ∨ q ∧ 4 Z)])

3.2 Solving GR(1) Games

LetG be a game where the winning condition is of the following form.

ϕ =

m
∧

i=1

0 1 J1
i →

n
∧

j=1

0 1 J2
j

HereJ1
i andJ2

j are sets of Boolean formulas. In [KPP05] we term these games as gen-
eralized Streett(1) games and provide the followingµ-calculus formula to solve them. Let
j ⊕ 1 = (j mod n) + 1.

ϕ = ν





























Z1

Z2

...

...

Zn































































µY

(

m
∨

i=1

νX(J2
1 ∧ 4 Z2 ∨ 4 Y ∨ ¬J1

i ∧ 4 X)

)

µY

(

m
∨

i=1

νX(J2
2 ∧ 4 Z3 ∨ 4 Y ∨ ¬J1

i ∧ 4 X)

)

...

...

µY

(

m
∨

i=1

νX(J2
n ∧ 4 Z1 ∨ 4 Y ∨ ¬J1

i ∧ 4 X)

)



































(3)

Intuitively, for j ∈ [1..n] andi ∈ [1..m] the greatest fixpointνX(J2
j ∧ 4 Zj⊕1 ∨ 4 Y ∨

¬J1
i ∧ 4 X) characterizes the set of states from which the system can force the play either

to stay indefinitely in¬J1
i states (thus violating the left hand side of the implication) or in a

finite number of steps reach a state in the setJ2
j ∧4 Zj⊕1 ∨ 4 Y . The two outer fixpoints

make sure that the system wins from the setJ2
j ∧ 4 Zj⊕1 ∨ 4 Y . The least fixpoint

µY makes sure that the unconstrained phase of a play represented by the disjunct4 Y is
finite and ends in aJ2

j ∧ 4 Zj⊕1 state. Finally, the greatest fixpointνZj is responsible
for ensuring that, after visitingJ2

j , we can loop and visitJ2
j⊕1 and so on. By the cyclic

dependence of the outermost greatest fixpoint, either all the sets inJ2
j are visited or getting

stuck in some inner greatest fixpoint, where someJ1
i is visited only finitely many times.

We include in Fig. 1 a (slightly simplified) code of the implementation of thisµ-calculus
formula in TLV (see Section 5). We denoteJα

i for α ∈ {1, 2} by Ji(i, α) and4 by cox.
We denote conjunction, disjunction, and negation by&, |, and! respectively. A Greatest-
Fixpoint loop on variableu starts by setting the initial value ofu to the set of all states and
a LeastFixpoint loop overu starts by settingu to the empty set of states. For both types
of fixpoints, the loop terminates if two successive values ofu are the same. The greatest
fixpoint GreatestFixpoint(x <= z), means that the initial value ofx is z instead
of the universal set of all states. We use the setsy[j][r] and their subsetsx[j][r][i] to define
n strategies for the system. The strategyfj is defined on the states inZj . We show that the
strategyfj either forces the play to visitJ2

j and then proceed toZj⊕1, or eventually avoid

6 This does not suggest a canonical translation from vector formulas to plain formulas. The same
translation works for the formula in Equation (3) below. Note that the formula in Equation (2) and
the formula in Equation (3) have a very similar structure.



Func winm(m, n);
GreatestFixpoint(z)
For (j in 1...n)

Let r := 1;
LeastFixpoint (y)

Let start := Ji(j,2) & cox(z) | cox(y);
Let y := 0;
For (i in 1...m)
GreatestFixpoint (x <= z)

Let x := start | !Ji(i,1) & cox(x);
End -- GreatestFixpoint (x)
Let x[j][r][i] := x; // store values of x
Let y := y | x;

End -- For (i in 1...m)
Let y[j][r] := y; // store values of y
Let r := r + 1;

End -- LeastFixpoint (y)
Let z := y;
Let maxr[j] := r - 1;

End -- For (j in 1...m)
End -- GreatestFixpoint (z)
Return z;

End -- Func winm(m, n);

Fig. 1. TLV implementation of Equation (3)

someJ1
i . We show that by combining these strategies, either the system switches strategies

infinitely many times and ensures that the play be winning according to right hand side of
the implication or eventually uses a fixed strategy ensuringthat the play does not satisfy the
left hand side of the implication. Essentially, the strategies are “go toy[j][r] for minimal
r” until getting to aJ2

j state and then switch to strategyj ⊕ 1 or “stay inx[j][r][i]”.
It follows that we can solve realizability ofLTL formulas in the form that interests us in

polynomial (cubic) time.

Theorem 1. [KPP05] Given sets of variablesX , Y whose set of possible valuations is
Σ and anLTL formulaϕ with m and n conjuncts, we can determine using a symbolic
algorithm whetherϕ is realizable in time proportional to(nm|Σ|)3.

4 Synthesis

We show how to use the intermediate values in the computationof the fixpoint to produce
anFDS that implementsϕ. TheFDS basically follows the strategies explained above.

Let X , Y, andϕ be as above. LetG: 〈V,X ,Y, ρe, ρs, Θ, ϕg〉 be theGS defined by
X , Y, andϕ (whereV = X ∪ Y). We construct the following fairness-freeFDS. Let
D : 〈VD,X ,YD , ΘD, ρ〉 whereVD = V ∪{jx} andjx ranges over[1..n],YD = Y ∪{jx},
ΘD = Θ ∧ (jx = 1). The variablejx is used to store internally which strategy should be
applied. The transitionρ is ρ1 ∨ ρ2 ∨ ρ3 whereρ1, ρ2, andρ3 are defined as follows.

Transitionρ1 is the transition taken when aJ2
j state is reached and we change strategy

from fj to fj⊕1. Accordingly, all the disjuncts inρ1 changejx. Transitionρ2 is the transi-
tion taken in the case that we can get closer to aJ2

j state. These transitions go from states
in some sety[j][r] to states in the sety[j][r′] wherer′ < r. We take care to apply this tran-
sition only to statess for whichr > 1 is the minimal index such thats ∈ y[j][r]. Transition
ρ3 is the transition taken from statess ∈ x[j][r][i] such thats |= ¬J1

i and the transition
takes us back to states inx[j][r][i]. Repeating such a transition forever will also lead to a



legitimate computation because it violates the environment requirement of infinitely many
visits toJ1

i -states. Again, we take care to apply this transition only tostates for which(r, i)
are the (lexicographically) minimal indices such thats ∈ x[j][r][i].

Let y[j][< r] denote the set
⋃

l∈[1..r−1] y[j][l]. We write(r′, i′) ≺ (r, i) to denote that
the pair(r′, i′) is lexicographically smaller than the pair(r, i). That is, eitherr′ < r or
r′ = r andi′ < i. Let x[j][≺(r, i)] denote the set

⋃

(r′,i′)≺(r,i) x[j][r
′][i′]. The transitions

are defined as follows.

ρ1 =
∨

j∈[1..n]

(jx=j) ∧ z ∧ J2
j ∧ ρe ∧ ρs ∧ z

′ ∧ (jx′=j⊕1)

ρ2(j) =
∨

r>1

y[j][r] ∧ ¬y[j][< r] ∧ ρe ∧ ρs ∧ y
′[j][< r]

ρ2 =
∨

j∈[1..n]

(jx=jx′=j) ∧ ρ2(j)

ρ3(j) =
∨

r>1

∨

i∈[1..m]

x[j][r][i] ∧ ¬x[j][≺(r, i)] ∧ ¬J1
i ∧ ρe ∧ ρs ∧ x

′[j][r][i]

ρ3 =
∨

j∈[1..n]

(jx=jx′=j) ∧ ρ3(j)

The conjuncts¬y[j][< r] and¬x[j][≺(r, i)] appearing in transitionsρ2(j) andρ3(j) en-
sure the minimality of the indices to which these transitions are respectively applied.

Notice that the above transitions can be computed symbolically. We include below the
TLV code that symbolically constructs the transition relationof the synthesizedFDS and
places it intrans. We denote the conjunction ofρe andρs bytrans12.

To symb_strategy;
Let trans := 0;
For (j in 1...n)
Let jp1 := (j mod n) + 1;
Let trans := trans | (jx=j) & z & Ji(j,2) & trans12 &

next(z) & (next(jx)=jp1);
End -- For (j in 1...n)
For (j in 1...n)
Let low := y[j][1];
For (r in 2...maxr[j])

Let trans := trans | (jx=j) & y[j][r] & !low &
trans12 & next(low) & (next(jx)=j);

Let low := low | y[j][r];
End -- For (r in 2...maxr[j])

End -- For (j in 1...n)
For (j in 1...n)
Let low := y[j][1];
For (r in 2...maxr[j])

For (i in 1...m)
Let trans := trans | (jx=j) & x[j][r][i] & !low

& !ji(i,1) & trans12 &
next(x[j][r][i]) & (next(jx)=j);

Let low := low | x[j][r][i];
End -- For (i in 1...m)

End -- For (r in 2...maxr[j])
End -- For (j in 1...n)

End -- To symb_strategy;



4.1 Minimizing the Strategy

We have created anFDS that implements anLTL goalϕ. The set of variables of thisFDS

includes the given set of input and output variables as well as a ‘memory’ variablejx.
We have quite a liberal policy of choosing the next successorin the case of a visit toJ2

j .
We simply choose some successor in the winning set. Here we minimize (symbolically)
the resultingFDS. A necessary condition for the soundness of this minimization is that the
specification be insensitive to stuttering7

Notice, that ourFDS is deterministic. For every state and every possible assignment
to the variables inX ∪ Y there exists at most one successor state with this assignment.
Thus, removing transitions seems to be of lesser importance. We concentrate on removing
redundant states.

As we are using the given sets of variablesX andY the only possible candidate states
for merging are states that agree on the values of variables in X ∪ Y and disagree on the
value of jx. If we find two statess and s′ such thatρ(s, s′), s[X ∪ Y] = s′[X ∪ Y],
and s′[jx] = s[jx]⊕1, we remove states. We direct all its incoming arrows tos′ and
remove its outgoing arrows. Intuitively, we can do that because for every computation that
passes throughs there exists a computation that stutters once ins (due to the assumption of
stuttering insensitivity). This modified computation passes froms to s′ and still satisfies all
the requirements (we know that stuttering ins is allowed because there exists a transition
to s′ which agrees withs on all variables).

As mentioned this minimization is performed symbolically.As we discuss in Section 5,
it turns out that the minimization actually increases the size of the resultingBDDs. It seems
to us that for practical reasons we may want to keep the size ofBDDs minimal rather than
minimize the automaton. The symbolic implementation of theminimization is given below.
The transitionobseq includes all possible assignments toV andV ′ such that all variables
exceptjxmaintain their values. It is enough to consider the transitions fromj to j⊕1 for all
j and then fromn to j for all j to remove all redundant states. This is because the original
transition just allows to increasejx by one.

For (j in 1..n)
Let nextj := (j mod n)+1;
reduce(j,nextj);

End -- For (j in 1..n)

For (j in 1..n-1)
reduce(n,j)

End -- For (j in 1..n-1)

Func reduce(j,k)
Let idle := trans & obseq & jx=j & next(jx)=k;
Let states := idle forsome next(V);
Let add_trans :=

((trans & next(states) & next(jx)=j) forsome jx) &
next(jx)=k;

Let rem_trans := next(states) & next(jx)=j1 |
states & jx=j1;

Let add_init := ((init & states & jx=j1) forsome jx) &
jx=k;

Let rem_init := states & jx=j;

7 A specification is insensitive to stuttering if the result ofdoubling a letter (or replacing a double
occurrence by a single occurrence) in a model is still a model. The specifications we consider
are allowed to use the next operator, thus they can be sensitive to stuttering. A specification that
requires that in some case an immediate response be made would be sensitive to stuttering.



Let trans := (trans & !rem_trans) | add_trans;
Let init := (init & !rem_init) | add_init;
Return;

End -- Func reduce(j,k)

5 Experimental Results

The algorithm described in this paper was implemented within the TLV system [PS96].
TLV is a flexible verification tool implemented at the Weizmann Institute of Science.TLV

provides a programming environment which usesBDDs as its basic data type [Bry86].
Deductive and algorithmic verification methods are implemented as procedures written
within this environment. We extendedTLV ’s functionality by implementing the algorithms
in this paper. We consider two examples. The case of an arbiter and the case of a lift
controller.

5.1 Arbiter

We consider the case of an arbiter. Our arbiter hasn input lines in which clients request
permissions andn output lines in which the clients are granted permission. Weassume that
initially the requests are set to zero, once a request has been made it cannot be withdrawn,
and that the clients are fair, that is once a grant to a certainclient has been given it even-
tually releases the resource by lowering its request line. Formally, the assumption on the
environment inLTL format is below.

∧

i

(ri ∧ 0 ((ri 6=gi)→ (ri= 2 ri)) ∧ 0 ((ri ∧ gi)→ 1 ri))

We expect the arbiter to initially give no grants, give at most one grant at a time (mutual
exclusion), give only requested grants, maintain a grant aslong as it is requested, to sat-
isfy (eventually) every request, and to take grants that areno longer needed. Formally, the
requirement from the system inLTL format is below.

∧

i6=j

0 ¬(gi ∧ gj) ∧
∧

i



gi ∧















0 ((ri=gi) → (gi= 2 gi)) ∧0 ((ri ∧ gi)→ 1 gi) ∧0 ((ri ∧ gi)→ 1 gi)



















The resulting game isG: 〈V,X ,Y, ρe, ρs, ϕ〉 where

– X = {ri | i = 1, . . . , n}
– Y = {gi | i = 1, . . . , n}
– Θ =

∧

i(ri ∧ gi)
– ρe =

∧

i((ri 6=gi)→ (r′i=ri))
– ρs =

∧

i6=j ¬(g
′
i ∧ g

′
j) ∧

∧

i((ri=gi)→ (g′i = gi))
– ϕ =

∧

i 0 ((ri ∧ gi)→ 1 ri)→
∧

i 0 ((ri ∧ gi)→ 1 gi) ∧ 0 ((ri ∧ gi)→ 1 gi)

We simplify ϕ by replacing0 ((ri ∧ gi) → 1 ri) by 0 1 ¬(ri ∧ gi) and replacing0 ((ri ∧ gi) → 1 gi) and 0 ((ri ∧ gi) → 1 gi) by 0 1 (ri=gi). The first simplifi-
cation is allowed because wheneverri ∧ gi holds, the next value ofgi is true. The second
simplification is allowed because wheneverri ∧ gi or ri ∧ gi holds, the next value ofri is
equal to the current. This results with the simpler goal:

ϕ =
∧

i

0 1 ¬(ri ∧ gi)→
∧

i

0 1 (ri=gi)

In Fig. 2, we present graphs of the run time and size of resulting implementations for the
Arbiter example. Implementation sizes are measured in number of BDD nodes.

In Fig. 3 we include the explicit representation of the arbiter for two clients resulting
from the application of our algorithm.
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Fig. 2. Running times and program size for the Arbiter example
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Fig. 3.Arbiter for 2

5.2 Lift Controller

We consider the case of a lift controller. We build a lift controller for n floors. We assume
n button sensors. The lift may be requested on every floor, oncethe lift has been called on
some floor the request cannot be withdrawn. Initially, on allfloors there are no requests.
Once a request has been fulfilled it is removed. Formally, theassumption on the environ-
ment inLTL format is below.

∧

i

(

bi ∧ 0 (

(bi ∧ fi)→ 2 bi
)

∧ 0 ((bi ∧ ¬fi)→ 2 bi)
)

We expect the lift to initially start on the first floor. We model the location of the lift by
ann bit array. Thus we have to demand mutual exclusion on this array. The lift can move
at most one floor at a time, and eventually satisfy every request. Formally, the requirement
from the system inLTL format is below.0 (up→ sb) ∧ 0 1 (f1 ∨ sb) ∧

∧

i6=j 0 ¬(fi ∧ fj) ∧
∧

i ((i = 1 ∧ fi ∨ i 6=1 ∧ ¬fi) ∧ 0 1 (bi → fi) ∧ 0 (fi → 2 (fi ∨ fi−1 ∨ fi+1)))

whereup =
∨

i(fi ∧ 2 fi+1) denotes that the lift moves one floor up, andsb =
∨

i bi
denotes that at least one button is pressed. The requirement0 (up→ sb) states that the lift
should not move up unless some button is pressed. The liveness requirement0 1 (f1∨sb)
states that either some button is pressed infinitely many times, or the lift parks at floorf1
infinitely many times. Together they imply that when there isno active request, the lift
should move down and park at floorf1.



In Fig. 4 we present graphs of the run time and the size of the resulting implementations
for different number of floors. As before, implementation sizes are measured in number of
BDD nodes.
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Fig. 4. Running times and program size for the Lift example

6 Extensions

The class of specifications to which theN3-synthesis algorithm is applicable is wider than
the limited form presented in Equation (1). The algorithm can be applied to any specifica-
tion of the form(

∧m

i=1 ϕi) → (
∧n

j=1 ψj), where eachϕi andψj can be specified by an
LTL formula of the form0 1 q for a past formulaq. Equivalently, eachϕi andψj should
be specifiable by a deterministic Büchi automaton. This is,for example, the case of the
original version of the Arbiter, where the liveness conjuncts were each a response formula
of the form0 (p→ 1 q).

The way we deal with such a formula is to add to the game additional variables and a
transition relation which encodes the deterministic Büchi automaton. For example, to deal
with a formula0 (p→ 1 q), we add to the game variables a new Boolean variablex with
initial conditionx = 1, and add to the transition relationρe the additional conjunct

x′ = (q ∨ x ∧ ¬p)

We replace in the specification the sub-formula0 (p → 1 q) by the conjunct0 1 x. It
is not difficult to see that this is a sound transformation. That is, the formula0 (p→ 1 q)
is satisfied by a sequenceσ iff there exists an interpretation of the variablex which satisfies
the added transition relation and also equals 1 infinitely many times.

Indeed, the in Table 1 we present the performance results of running the Arbiter ex-
ample with the original specification, to which we applied the above transformation from
response to recurrence formulas. The first column presents the results, when the liveness
requirements are given as the recurrence formulas0 1 (ri = gi). In the second col-
umn, we present the results for the case that we started with the original requirements0 (ri → 1 )gi, and then transformed them into recurrence formulas according to the
recipe presented above.

7 Conclusions

We presented an algorithm that solves realizability and synthesis for a subset ofLTL . For
this subset the algorithm works in cubic time. We also presented an algorithm which re-
duces the number of states in the synthesized module for the case that the specification is
stuttering insensitive.



N Recurrence PropertiesResponse Properties

4 0.05 0.33
6 0.06 0.89
8 0.13 1.77

10 0.25 3.04
12 0.48 4.92
14 0.87 7.30
16 1.16 10.57
18 1.51 15.05
20 1.89 20.70
25 3.03 43.69
30 4.64 88.19
35 6.78 170.50
40 9.50 317.33

Table 1.Experiments for Arbiter

We have shown that the approach can be applied to wide class offormulas, which
covers the full set of generalized reactivity[1] properties. We expect both the system and
the environment to be realized by hardware designs. Thus, the temporal semantics of both
the system and the environment have a specific form and the implication between the two
falls in the set of formulas that we handle. Generalized reactivity[1] certainly covers all
the specifications we have so far considered in the Prosyd project. We believe that modi-
fications similar to the ones described in Section 6 would be enough to allow coverage of
specifications given in languages such asPSL or FORSPEC[AO04,AFF+02].
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