Synthesis of Reactive(1) Designs

Nir Pitermart, Amir Pnuel?, and Yaniv Sa’af

1 EPFL - I&C - MTC, 1015, Lausanne, Switzerland.
firstnane. | ast name@pfl.ch
2 Department of Computer Science, Weizmann Institute ofr@eigRehovot, 76100, Israel.
firstname. | ast nane@wei zmann. ac. i |
3 Department of Computer Science, Ben Gurion UniversityrBeeva, Israel.
saary@s. bgu. ac. il

Abstract. We consider the problem of synthesizing digital designsftheir LTL
specification. In spite of the theoretical double exporadiwer bound for the gen-
eral case, we show that for many expressive specificatiohamfware designs the
problem can be solved in tinfé3, whereN is the size of the state space of the design.
We describe the context of the problem, as part of the Prosydean Project which
aims to provide a property-based development flow for harelatasigns. Within this
project, synthesis plays an important role, first in ordecheck whether a given
specification is realizable, and then for synthesizing pathe developed system.
The class oL TL formulas considered is that of Generalized Reactivity§Eneral-
ized Streett(1)) formulas, i.e., formulas of the form:

AOCmA-- A0 = (Oan A0)

where eaclp;, g; is a boolean combination of atomic propositions. We alscictar
the more general case in which egeh ¢; is an arbitrary pastTL formula over
atomic propositions.

For this class of formulas, we present Ari-time algorithm which checks whether
such a formula is realizable, i.e., there exists a circuitctvisatisfies the formula
under any set of inputs provided by the environment. In thee ¢hat the specifica-
tion is realizable, the algorithm proceeds to constructidaraaton which represents
one of the possible implementing circuits. The automata@omputed and presented
symbolically.

1 Introduction

One of the most ambitious and challenging problems in rea&ystems construction is
the automatic synthesis of programs and (digital) desigpma fogical specifications. First
identified as Church’s problem [Chu63], several method®Hseen proposed for its so-
lution ([BL69], [Rab72]). The two prevalent approachesabvgg the synthesis problem
were by reducing it to the emptiness problem of tree autoraathviewing it as the solution
of a two-person game. In these preliminary studies of thblpro, the logical specification
that the synthesized system should satisfy was given asafoshula.

This problem has been considered again in [PR89a] in thegbot synthesizing reac-
tive modules from a specification given in Linear TemporagicdLTL). This followed two
previous attempts ([CE81], [MW84]) to synthesize progrdrom temporal specification
which reduced the synthesis problem to satisfiability, rgrgpthe fact that the environment

* This research was supported in part by the Israel Sciencedation (grant no.106/02-1), Euro-
pean community project Prosyd, the John von-Neumann Méineewnter for Verification of Reac-
tive Systems, NSF grant CCR-0205571, ONR grant NO0O014-0%31, and SRC grant 2004-TJ-
1256.

should be treated as an adversary. The method proposed @#PRr a giver_TL spec-
ification ¢ starts by constructing a Biichi automatBy, which is then determinized into

a deterministic Rabin automaton. This double translatiay neach complexity of double
exponent in the size gf. Once the Rabin automaton is obtained, the game can be solved
in time n°*), wheren is the number of states of the automaton &nd the number of
accepting pairs.

The high complexity established in [PR89a] caused the sgidtprocess to be identi-
fied as hopelessly intractable and discouraged many poaetis from ever attempting to
use it for any sizeable system development. Yet there exigtral interesting cases where,
if the specification of the design to be synthesized is r&stlito simpler automata or partial
fragments ot TL, it has been shown that the synthesis problem can be solypedyinomial
time. Representative cases are the work in [AMPS98] whielsemts (besides the gener-
alization to real time) efficient polynomial solution®’¢) to games (and hence synthesis
problems) where the acceptance condition is one oftheformulas(] p, < ¢, 1 p,
or & [1¢. A more recent paper is [AT04] which presents efficient sgath approaches
for theLTL fragment consisting of a boolean combinations of formufahe form] p.

This paper can be viewed as a generalization of the resu[sMPS98] and [AT04]
into the wider class afeneralized Reactivi§) formulas (GR(1)), i.e. formulas of the form

(OOnA---A"OOPR) — (OCaA---AOOw) 1)

Following the developments in [KPPO05], we show how any sgsihiproblem whose spec-
ification is a GR(1) formula can be solved in tim&, whereN is the size of the state space
of the design. Furthermore, we present a (symbolic) allgorior extracting a design (pro-
gram) which implements the specification. We make an argtithanhthe class of GR(1)
formulas is sufficiently expressive to provide completecfations of many designs.

This work has been developed as part of the Prosyd projextissv.prosyd.org) which
aims at the development of a methodology and a tool suit ®ptloperty-based construc-
tion of digital circuits from their temporal specificatioNithin the prosyd project, synthe-
sis techniques are applied to check first whether a set ofeptiep isrealizable and then
to automatically produce digital designs of smaller units.

2 Preliminaries

2.1 Linear Temporal Logic

We assume a countable set of Boolean variables (proposjfion.TL formulas are con-
structed as follows.

pu=pl-pleVel OplpUyp

As usual we denote(—¢ V =) by p A, TU p by & ¢ and— O o by [T . Aformula
that does not include temporal operators Bomlean formula

A modelos for a formulayp is an infinite sequence of truth assignments to propositions
Namely, if P’ is the set of propositions appearinggnthen for every finite seP such that
P' C P, aword in(2F)« is a model. We denote hy(i) the set of propositions at position
i, thatisoc = ¢(0),0(1),.... We present an inductive definition of when a formula holds
in modelo at position.

Forp € P we haver,i = piff p € o(i).

—oifEpiffoifEe

oilEeVYiff o,i Eporo,i

oilEQeiff i+l

— 0,1 = U iffthere existsk > i suchthav, k = ¢ ando, j = o forallj,i <j <k

For a formulay and a positiory > 0 such that, j = ¢, we say thatp holds at position
jofo.If 0,0 E ¢ we say thatp holdson o and denote it by = ¢. A set of models.
satisfiesp, denoted. = ¢, if every model inL satisfiesp.

We are interested in the questiorreélizability of LTL specifications [PR89b]. Assume
two sets of variableg” and) . Intuitively X is the set of input variables controlled by the
environmentang is the set of system variables. With no loss of generalityassime that
all variables are Boolean. Obviously, the more general tteetet’ and)’ range over arbi-
trary finite domains can be reduced to the Boolean d@salizabilityamounts to checking
whether there exists aypen controlletthat satisfies the specification. Such a controller can
be represented as an automaton which, at any step, inputssvaf theX variables and
outputs values for thg’ variables. Below we formalize the notion of checking resbidity
andsynthesisnamely, the construction of such controllers.

Realizability forLTL specifications is 2EXPTIME-complete [PR90]. We are inttres
in a subset of TL for which we solve realizability and synthesis in polynohtiae. The
specifications we consider are of the fogm= . — 5. We require thap,, for a € {e, s}
can be rewritten as a conjunction of the following parts.

— % - a Boolean formula which characterizes the initial stafdb® implementation.

— ¢§ - a formula of the form/\iel] B; where eachB; is a Boolean combination of
variables fromX U) and expressions of the for@ v wherev € X' if a = ¢, and
v € X UY otherwise.

- pg-a formula of the fom}/\iel] & B; where eaclB; is a Boolean formula.

It turns out that most of the specifications written in preetian be rewritten to this fornfat

In Section 7 we discuss also cases where the formpffasave also sub-formulas of the
form O (p — < ¢) wherep andg are Boolean formulas, and additional cases which can
be converted to the GR(1) format.

2.2 Game Structures

We reduce the realizability problem of anL formula to the decision of winner in games.
We consider two-player games played between a system andvaorement. The goal
of the system is to satisfy the specification regardless @fatttions of the environment.
Formally, we have the following.

A game structurdGs) G : (V, X,), 0, pe, ps, ©) consists of the following compo-
nents.

o V = {uy,...,u,} : Afinite set of typedstate variablesver finite domains. With
no loss of generality, we assume they are all Boolean. We elefgtate s to be an
interpretation ofl/, assigning to each variablec V a values[u] € {0, 1}. We denote
by X the set of all states. We extend the evaluation functjdrio Boolean expressions
overV in the usual way. Arassertionis a Boolean formula ovéer. A states satisfies
an assertiorp denoteds = ¢, if s[¢] = true. We say that is ay-state ifs = .

e X C Vis aset ofinput variables These are variables controlled by the environment.
Let Dx denote the possible valuations to variableg’in

e Y =V \ Xis a set ofoutput variablesThese are variables controlled by the system.
Let Dy denote the possible valuations for the variable¥in

e O is the initial condition. This is an assertion charactaggall the initial states ofs.

A state is callednitial if it satisfies©.

4 In practice, the specification is usually given in this fotniEhe specification is a collection of
assumptions and requirements with the semantics that suhgstions imply all requirements.
Every assumption or requirement is usually of a very simptenfila similar to the required form.

e p.(X, Y, X)is the transition relation of the environment. This is area$sn, relating
a states € X' to a possible next input valug € Dx, by referring to unprimed copies
of X and) and primed copies oft. The transition relation,. identifies valuation
¢ € Dy as a possiblénputin states if (s,&') | pe(X, Y, X’) where(s, &) is the
joint interpretation which interprets € V ass[u] and forv € X interpretsy’ as¢’[v].

o p,(X, ¥, X)) is the transition relation of the system. This is an assertielating a
states € X and an input valu¢’ € Dx to a next output valug’ € Dy, by referring
to primed and unprimed copies bf. The transition relatiop, identifies a valuation
n' € Dy as a possibleutputin states reading input¢’ if (s,&,n') E ps(V, V')
where(s, &', 1) is the joint interpretation which interpretse X’ ass[u|, u’ as&’[u],
and similarly forv € Y.

e ¢ is the winning condition, given by arrL formula.

For two states ands’ of G, s’ is asuccessonf s if (s, s') E pe A ps. We freely switch
between(s, &') = p. andp.(s, &) = 1 and similarly forps. A play o of G is a maximal
sequence of states : sg, s1, ... satisfyinginitiality namelys, = ©, andconsecution
namely, for eacty > 0, s;4 is a successor of;. Let G be ancs ando be a play ofG.
From a state, the environment chooses an inglte Dx such thap.(s,&’) = 1 and the
system chooses an outpyte Dy such thap;(s,&',n') = ps(s,s’) = 1.

A play o is winning for the systenf it is infinite and it satisfiesp. Otherwiseo is
winning for the environment

A strategyfor the system is a partial functioh: X x Dx — Dy such that ifo =
S0, - .- 8y, then for evenyg’ € Dx such thap,(s,, &) = 1 we havep,(s,, &', f(0,&')) =
1. Let f be a strategy for the system, ande Y. A play so, s1, . . . is said to becompliant
with strategyf if for all ¢ > 0 we havef(so, ..., i, Si+1[X]) = si+1[YV], wheres; 11 [X]
ands;1[Y)] are the restrictions of;; ; to variable setst and), respectively. Strategy is
winningfor the system from statec Y if all s-plays (plays departing from) which are
compliant withf are winning for the system. We denoteldy the set of states from which
there exists a winning strategy for the systenstfategyfor player environmentyinning
strategy and thewinning setlV, are defined dually. A5s G is said to bewinning for the
system if all initial states are winning for the system.

Given anLTL specificationp, — ¢ as explained above and sets of input and output
variablest and) we construct &s as follows. Letp, = ¢ A o A ¢ for a € {e, s}.
Then, forO we takep§ A ¢f. Letpy = A, ; O B;, thenp, = A,.; 7(B;), where the
translationr replaces each instance @) v by v'. Finally, we setp = ¢; — ;. We
solvethe game, attempting to decide whether the game is winninthéoenvironment or
the system. If the environment is winning the specificat®uarirealizable If the system
is winning, wesynthesizea winning strategy which is working implementatioffior the
system as explained in Section 4.

2.3 Fair Discrete Systems

We present implementations as a special cadaiofliscrete system&bps) [KP0O]. An
FDSD:(V,0,p,J,C) consists of the following components.

o V = {uy,...,u,} : A finite set of Boolean variables. We definestate s to be an
interpretation ol/. Denote by’ the set of all states. Assertions o¥éand satisfaction
of assertions are defined like in games.

e O : Theinitial condition. This is an assertion characterizing all the initial statithe
FDS. A state is calledhnitial if it satisfies©.

e p : A transition relation This is an assertiop(V, V'), relating a state € X to its
D-successos’ € Y.

o 7 ={Ji,...,Jm} : Asetofjustice requirementéveak fairness). Each requirement
J € J is an assertion which is intended to hold infinitely many snreevery compu-
tation.

e C = {(p1,q1),---,(pn,qn)} : A set of compassion requiremen(strong fairness).
Each requiremen(p, q) € C consists of a pair of assertions, such that if a computation
contains infinitely many-states, it should also hold infinitely manystates.

We define aun of theFDS D to be a maximal sequence of states s, s1, ..., satisfying
the requirements of

o Initiality: sq is initial, i.e.,so = 6.
o ConsecutionFor every; > 0, the states;; is aD-successor of the stag.

The sequence being maximal means that eitheris infinite, oro = s, ..., s; andsg
has naD-successor.

A run o is defined to be @omputationof D if it is infinite and satisfies the following
additional requirements:

e Justice:For eachJ € 7, o contains infinitely many/-positions, i.e. positiong > 0,
such thats; = J.

e Compassionfor each(p, q) € C, if o contains infinitely many-positions, it must
also contain infinitely many-positions.

We say that amDs D implementspecificationy if every run of D is infinite, and every
computation ofD satisfiesp. An FDsis said to beairness-fredf 7 = C = (). Itis called
ajust transition systertups) if C = 0.

In general, we useDSs in order to formalize reactive systems. When we formalize
concurrent systems which communicate by shared variaBlegel as most digital de-
signs, the ensuing formal model is that ofias (i.e., compassion-free). Compassion is
needed only in the case that the program uses built-in spnctation constructs such as
semaphores or synchronous communication.

For everyrDs, there exists anTL formulay,,, called thetemporal semanticef D
which fully characterizes the computationsfIt can be written as:

pp: @A DOEV,OV)IA ANOOIA A\ (OOCr—-000)

JeJg (p.g)eC

wherep(V, O V) is the formula obtained from(V, V') by replacing each instance of
primed variabler’ by theLTL formulaQ .

Note that in the case th@tis compassion-free (i.e., it isi@9), then its temporal semantics
has the form

o OADOEV,OVYA \NDOOJ
JeJg

It follows that the class of specifications we consider iis faper, as explained at the end
of Subsection 2.1, have the form = ¢. — ¢, where eachp,, for a € {e, s}, is the
temporal semantics of amns. Thus, if the specification can be realized by an environment
which is asbsand a system which is #s (in particular, if none of them requires com-
passion for their implementation), then the class of sgmtifins we consider here are as
general as necessary. Note in particular, that hardwaigrdesarely assume compassion
(strong fairness) as a built-in construct. Thus, we expeadtrapecifications to be realized
by hardware designs to fall in the class of GR(1).

3 p-calculus and Games

In [KPPO5], we consider the case of GR(1) games (called thereralized Streett(1)
games). In these games the winning condition is an imptioatietween conjunctions of
recurrence formulag{] < ¢ wherey is a Boolean formula). These are exactly the types

of goals in the games we defined in Section 2. We show how tesaleh games in cu-
bic time [KPPO5]. We re-explain here how to compute the wigrniegions of each of the
players and explain how to use the algorithm to extract a ingstrategy. We start with

a definition ofu-calculus over game structures. We give thealculus formula that char-

acterizes the set of winning states of the system. We explainwe construct from this

p-calculus formula an algorithm to compute the set of winrstafes. Finally, by saving

intermediate values in the computation, we can constru@baing strategy and synthesize
anrDsthat implements the goal.

3.1 p-calculus over Games Structures

We definep-calculus [Koz83] over game structures. L@t (V, X, Y, 0, p., ps, ¢) be a
GS. For every variables € V the formulasy and —v areatomic formulasLet Var =
{X,Y,...} be a set ofrelational variables The u-calculus formulas are constructed as
follows.

pu=v|w|[X[eVelpAp| Qel| Op|pXe|vXy

A formula) is interpreted as the set 6f-states inY’ in which ¢ is true. We write such
set of states afy]]¢, whereG is thecgs ande : Var — 2% is anenvironment The

environment assigns to each relational variable a subset We denote by[X «— S] the

environment such tha{X «— S|(X) = S ande[X «— S|(Y) =e(Y) forY # X. The set
[[¥]]¢ is defined inductively as follows

o [ollg ={seX|s[v] =1}

. [[ﬁv]]?;*{SGEIS[v] = 0}

o [X][G = e(X)

o [l volle = [lelle U llv]]le

o [lprdlle = [[99]]8 N {[llg

. [0l V!, (s,m’) E pe — Jy’ such thai(s, ', y’) E ps
v and(z’,y') € (o]l

A states is included in[[Q ¢]]% if the system can force the play to reach a state in
[[¢]]&. Thatis, regardless of how the environment moves fspthe system can choose
an appropriate move infpy]]¢,.

e 3z’ such tha(s, ') = p. and
Ol = { € ‘ vy, (s.2'.y) = po— (@9 € 9]l }
A states is included in[[@ ¢]]¢ if the environment can force the play to reach a state
in [[¢]]%. As the environment moves first, it chooses an ingue X such that for all
choices of the system the success@ in [[¢]]%.

[[/J‘XSD]]%’ == UZS»L WhereS() = @ andS,L.+1 — [[90]]gX<—Sq]
° [[VXSDHE’ = sz»L WhereS() =) andS,L.+1 — [[w]]ec[)ﬂ—sl]

When all the variables i are bound by either or v the initial environment is not impor-
tant and we simply writg[¢]] . In case tha&s is clear from the context we writigp]].
Thealternation depthof a formula is the number of alternations in the nesting a$te
and greatest fixpoints. f-calculus formula defines a symbolic algorithm for compgitin
[[¢]] [EL86]. For au-calculus formula of alternation depkhthe run time of this algorithm
is O(|X|*). For a full exposition ofu-calculus we refer the reader to [Eme97]. We often
abuse notations and writezacalculus formulap instead of the sdfy]].
In some cases, instead of using a very complex formula, itlmeayore readable to use
vector notatioras in Equation (2) below.

4] Y (Y V pAD Z2)
SDV[Z;} LM@Y v qA@Z?) @

® Only for finite game structures.

Such a formula, may be viewed as the mutual fixpoint of thealdeisZ, andZ, or equiv-
alently as an equal formula where a single variableeplaces botl¥; andZ; and ranges
over pairs of states [Lic91]. The formula above charactsrihe set of states from which
system can force the game to vigistates infinitely often ang-states infinitely often. We
can characterize the same set of states by the followingriabformulef.

p=vZ (WY (QY VpAQZ)| N [Y(QY V ¢rQD Z)])

3.2 Solving GR(1) Games

Let G be a game where the winning condition is of the following form

p=N\NOCH - ANOOT

i=1 j=1

Here J} and Jj? are sets of Boolean formulas. In [KPPO5] we term these gamege@-
eralized Streett(1) games and provide the followingalculus formula to solve them. Let
j®1=(jmodn)+1.

(207 | py <\/VX(J12/\©Z2 VOY VvV —J}/\@X))

i=1

Z m
2 uY(\/uX(JS/\@Zg\/@YV—J}/\@X))
i=1

p=v| : : 3

Zn m |
ng <\/ vX(JPANQZ1i VvV QY V —J}/\@X))

i=1

Intuitively, for j € [1..n] andi € [1..m] the greatest fixpointX (J3 A QO Zjer V OY V
-J} A Q X) characterizes the set of states from which the system cae foe play either
to stay indefinitely in~.J} states (thus violating the left hand side of the implicationin a
finite number of steps reach a state in thefget QO Zje1 V QY. The two outer fixpoints
make sure that the system wins from the $gt\ Q Z;1 vV QY. The least fixpoint
1Y makes sure that the unconstrained phase of a play reprddgntee disjunct) Y is
finite and ends in aff N Q Z;e1 state. Finally, the greatest fixpoin; is responsible
for ensuring that, after visiting’?, we can loop and visiIIjQ691 and so on. By the cyclic
dependence of the outermost greatest fixpoint, eitherabeis in]j2 are visited or getting
stuck in some inner greatest fixpoint, where sofés visited only finitely many times.

We include in Fig. 1 a (slightly simplified) code of the implenation of thig:-calculus
formula inTLv (see Section 5). We denof* for o € {1,2} by Ji(i,) andQ by cox
We denote conjunction, disjunction, and negatiorhy}, and! respectively. A Greatest-
Fixpoint loop on variable; starts by setting the initial value afto the set of all states and
a LeastFixpoint loop over starts by setting. to the empty set of states. For both types
of fixpoints, the loop terminates if two successive values afe the same. The greatest
fixpoint G- eat est Fi xpoi nt (x <= z), means that the initial value ofis z instead
of the universal set of all states. We use the g¢fgr] and their subsets]|j][r][i] to define
n strategies for the system. The stratggys defined on the states iy. We show that the
strategyf; either forces the play to visiJ.‘j2 and then proceed 441, or eventually avoid

® This does not suggest a canonical translation from vectonitas to plain formulas. The same
translation works for the formula in Equation (3) below. Bltitat the formula in Equation (2) and
the formula in Equation (3) have a very similar structure.

Func winn(m n);
G eat est Fi xpoi nt (z)
For (j in 1...n)
Let r .= 1;
Least Fi xpoi nt (y)
Let start := Ji(j,2) & cox(z) | cox(y);
Let y := 0;
For (i in1...m
G eat est Fi xpoint (x <= z)

Let x :=start | !'Ji(i,1) & cox(x);
End -- G eatestFixpoint (x)
Let x[j]1[r][i] := x; // store values of x

Let y :=y | Xx;
End -- For (i in 1...m

Let y[j][r] :=1vy; I/ store values of y
Let r :=7r1 + 1;

End -- LeastFi xpoint (y)

Let z :=vy;

Let maxr[j] :=r - 1,

End -- For (j in 1l...m
End -- G eatestFixpoint (z2)
Return z;

End -- Func winm(m n);

Fig. 1. TLv implementation of Equation (3)

someJ}. We show that by combining these strategies, either thesyswitches strategies
infinitely many times and ensures that the play be winnin@ating to right hand side of
the implication or eventually uses a fixed strategy ensuhiagthe play does not satisfy the
left hand side of the implication. Essentially, the stré&sgre “go toy[;][r] for minimal
7" until getting to a.J7 state and then switch to strategy 1 or “stay in[j][r][i]".

It follows that we can solve realizability afrL formulas in the form that interests us in
polynomial (cubic) time.

Theorem 1. [KPPO5] Given sets of variableg’,) whose set of possible valuations is
XY’ and anLTL formula ¢ with m andn conjuncts, we can determine using a symbolic
algorithm whethery is realizable in time proportional tnm|X|)3.

4 Synthesis

We show how to use the intermediate values in the computafithre fixpoint to produce
anrFDsthat implements. TheFDs basically follows the strategies explained above.
Let X, Y, andy be as above. LeG: (V, X,), pc, ps, ©, ¢q) be theGs defined by
X, Y, andp (whereV = X U)Y). We construct the following fairness-fre®s. Let
D:(Vp,X,Vp,Op, p) WhereVp = VU {jz} andjz ranges ovefl..n|, Vp = YU {jz},
Op = O A (jz = 1). The variablejx is used to store internally which strategy should be
applied. The transitiop is p1 V p2 V p3 Wherepy, p2, andpz are defined as follows.
Transitionp; is the transition taken Whenlff state is reached and we change strategy
from f; to f;e1. Accordingly, all the disjuncts ip; changejz. Transitionp, is the transi-
tion taken in the case that we can get closer Ilja;tate. These transitions go from states
in some sey[j][r] to states in the sef{j][r'] wherer’ < r. We take care to apply this tran-
sition only to states for whichr > 1 is the minimal index such thate y/[;][r]. Transition
ps is the transition taken from statese z[j][r][i] such thats = —.J} and the transition
takes us back to statesirj][r][:]. Repeating such a transition forever will also lead to a

legitimate computation because it violates the envirortmeguirement of infinitely many
visits toJ ! -states. Again, we take care to apply this transition onlstates for whichr, i)
are the (lexicographically) minimal indices such that x[4][r][4].

Lety[j][< r] denote the set),.(; ,._q;y[j][l]. We write(r', ") < (r,i) to denote that
the pair(+/, ') is lexicographically smaller than the pdit,). That is, eithen’ < r or
r’ = randi’ <i. Letz[j][<(r,4)] denote the sdl),, .\ .., z[J][r'][']. The transitions
are defined as follows.

poo= \ Go=4) Az AJZ A pe A ps A2 A (j2'=jo1)
pﬂﬂ:ﬁ%gMMAﬂmm<ﬂAmAmAMMkﬂ

po= V' Gemi'=i) A pali)

) = \/H\/ 2lj117108) A~ 1=, D] A= A pe A ps A2/ 311711

The conjunctsy[j][< r] and—z[j][<(r,)] appearing in transitions,(j) andps(j) en-
sure the minimality of the indices to which these transiane respectively applied.

Notice that the above transitions can be computed symbiglivee include below the
TLv code that symbolically constructs the transition relatibthe synthesizeébs and
places itint r ans. We denote the conjunction of andps byt rans12.

To synb_strat egy;
Let trans := 0O;
For (j in 1...n)
Let jpl := (j nod n) + 1;
Let trans := trans | (jXx=j

) &z & Ji(j,2) &transl2 &
next (z)

& (next (j x)=jpl);
End -- For (j in 1...n)
For (j in 1...n)
Let low:= y[j][1];
For (r in 2...maxr[j])
Let trans :=trans | (jx=) &y[j]l[r] &!low &
transl2 & next(low) & (next(jx)=j);
Let low:=1low | y[jl[r];
End -- For (r in 2...maxr[j])
End -- For (j in 1...n)
For (j in 1...n)
Let low := y[j][1];
For (r in 2...maxr[j])
For (i in1...m
Let trans :=trans | (jx=) & x[j][r][i] & !'low
& lji(i,1) &transl2 &
next (x[j][r][i]) & (next(jx)=j);
Let low:=1low | x[jI[r][i];
End -- For (i in1l...m
End -- For (r in 2...maxr[j])
End -- For (j in 1...n)
End -- To synb_strategy;

4.1 Minimizing the Strategy

We have created arDs that implements anTL goal¢. The set of variables of thisbs

includes the given set of input and output variables as wekh &nemory’ variablejx.

We have quite a liberal policy of choosing the next successtre case of a visit tdj2.

We simply choose some successor in the winning set. Here winie (symbolically)
the resultingFDs. A necessary condition for the soundness of this mininozreis that the
specification be insensitive to stuttering

Notice, that ourFDs is deterministic. For every state and every possible assigm
to the variables int U) there exists at most one successor state with this assignmen
Thus, removing transitions seems to be of lesser importdleeconcentrate on removing
redundant states.

As we are using the given sets of variablésnd) the only possible candidate states
for merging are states that agree on the values of variablésu) and disagree on the
value of jz. If we find two statess and s’ such thato(s,s’), s|[X¥ U Y] = §'[X U],
ands'[jz] = s[jz]®1, we remove state. We direct all its incoming arrows te’ and
remove its outgoing arrows. Intuitively, we can do that heesfor every computation that
passes throughthere exists a computation that stutters once(due to the assumption of
stuttering insensitivity). This modified computation pesfroms to s’ and still satisfies all
the requirements (we know that stutteringsiis allowed because there exists a transition
to s’ which agrees witls on all variables).

As mentioned this minimization is performed symbolicaflg.we discuss in Section 5,
it turns out that the minimization actually increases tlze sif the resultin@DDs. It seems
to us that for practical reasons we may want to keep the sis®b$ minimal rather than
minimize the automaton. The symbolic implementation ofittieimization is given below.
The transitiorvbseq includes all possible assignmentsifocandV’ such that all variables
exceptjxz maintain their values. Itis enough to consider the tramsgtifrom; to ;@1 for all
4 and then from to 5 for all 5 to remove all redundant states. This is because the original
transition just allows to increage by one.

For (j in 1..n)
Let nextj := (j nod n)+1;
reduce(j, nextj);

End -- For (j in 1..n)

For (j in 1..n-1)
reduce(n,j)
End -- For (j in 1..n-1)

Func reduce(j, k)
Let idle :=trans & obseq & jx=] & next(jx)=k;
Let states := idle forsome next(V);
Let add trans : =
((trans & next(states) & next(jx)=j) forsonme jx) &
next (j x) =k;
Let remtrans := next(states) & next(jx)=j1 |
states & j x5 1;
((init & states & jx=j1) forsone jx) &
j x=k;
states & jxIj;

Let add_init

Let reminit

" A specification is insensitive to stuttering if the resultdaiubling a letter (or replacing a double
occurrence by a single occurrence) in a model is still a mote¢ specifications we consider
are allowed to use the next operator, thus they can be sengitstuttering. A specification that
requires that in some case an immediate response be madg veosénsitive to stuttering.

Let trans := (trans & !remtrans) | add_trans;
Let init := (init & !'reminit) | add_init;
Ret ur n;

End -- Func reduce(j, k)

5 Experimental Results

The algorithm described in this paper was implemented withe TLv system [PS96].
TLv is a flexible verification tool implemented at the Weizmanstitate of SciencerLv
provides a programming environment which useDs as its basic data type [Bry86].
Deductive and algorithmic verification methods are impletad as procedures written
within this environment. We extendeadv’s functionality by implementing the algorithms
in this paper. We consider two examples. The case of an atdnite the case of a lift
controller.

5.1 Arbiter

We consider the case of an arbiter. Our arbiter masput lines in which clients request
permissions and output lines in which the clients are granted permissionag#&ime that

initially the requests are set to zero, once a request hasrbade it cannot be withdrawn,
and that the clients are fair, that is once a grant to a cectent has been given it even-
tually releases the resource by lowering its request lioemilly, the assumption on the
environmentin_tL format is below.

A7 A O (i) — (ri= O 1)) AT (ri A gs) — O 7))

K2

We expect the arbiter to initially give no grants, give at inmse grant at a time (mutual
exclusion), give only requested grants, maintain a grambrg as it is requested, to sat-
isfy (eventually) every request, and to take grants thaharlnger needed. Formally, the
requirement from the system imL format is below.

O(ri=g:) — (=0 g:)) N
AO-@rag) AN GA | O AG) = O gi) A
i#] i O Agi) = i)

The resulting game i§: (V, X, Y, p, ps, ¢) Where

- X={r;]li=1,...,n}

- Y={g;li=1,...,n}

- 0= AT

= pe = Ni((riz£g:) — (rj=r4))

= ps = Nizg ~(9i N g3) A Ni((ri=gi) — (g; = 94))

—o=NA0ri ANgi)) = OT) = A\, O((ri AGi) — O gi) NO((Ti A gi) = O i)
We simplify ¢ by replacing[J((r; A g;) — < 7) by O —(ri A gi) and replacing
O(r: Agi) — O gi) and (T A gi) — S) by O O (ri=g:). The first simplifi-
cation is allowed because whenevgn g; holds, the next value af; is true. The second
simplification is allowed because whenevgn g; or 7; A g; holds, the next value of; is
equal to the current. This results with the simpler goal:

@Z/\Doﬁ(ﬁ/\gi) H/.\D O (ri=gi)

In Fig. 2, we present graphs of the run time and size of regulthplementations for the
Arbiter example. Implementation sizes are measured in ren@iBDD nodes.

In Fig. 3 we include the explicit representation of the abfor two clients resulting
from the application of our algorithm.

150 300

o Program Size —— 7
& 125 L2
S 5 Execution Time -- - - 50
b m
© 100 200 ©
k7] o
E 75+ —+-150 @
a N
g 501 100 2
a F
25— —50
0 90

Number of clients

Fig. 2. Running times and program size for the Arbiter example

T1T2;391 02 | 17259192 l---’l 172501 92 l
[7“15;%9_2}—'[7“17“2;EE] [7“17“2;5%]--- 172501 92
1 L 1

1
1 1
L]

A
L[172359192]—’[7“17"2;91%]

Fig. 3. Arbiter for 2

5.2 Lift Controller

We consider the case of a lift controller. We build a lift aatier for n floors. We assume
n button sensors. The lift may be requested on every floor, treckft has been called on
some floor the request cannot be withdrawn. Initially, orflalbrs there are no requests.

Once a request has been fulfilled it is removed. Formallyaggimption on the environ-
mentinLTL format is below.

I\ (0 AT (0 A fi) = OBi) AT ((bi A=fi) = Obi))

K2

We expect the lift to initially start on the first floor. We mddee location of the lift by
ann bit array. Thus we have to demand mutual exclusion on thayaiithe lift can move

at most one floor at a time, and eventually satisfy every reigi@rmally, the requirement
from the system inTL format is below.

O(up—sh) A TOO(f1vsh) A A, O-(fiAf;) A
N (@=1Afi ViELA=f) AT O — fi) AO(fi = Ofi V fic1 V fir)))

whereup = V/,(f; A O fit+1) denotes that the lift moves one floor up, astd= \/, b;
denotes that at least one button is pressed. The requirémgrmni — sb) states that the lift
should not move up unless some button is pressed. The liveagsirement] (1 Vsh)
states that either some button is pressed infinitely mangsjrar the lift parks at floof;
infinitely many times. Together they imply that when therenésactive request, the lift
should move down and park at flogr.

In Fig. 4 we present graphs of the run time and the size of hdtirg implementations
for different number of floors. As before, implementatioresi are measured in number of
BDD nodes.

300+ — 120
o= Program Size ——)
& 2 _| A1
= 50 Execution Time - - - - . 00
) —
© 200 80 B
8 5
E 150 —+-60 &
I £
g 100 —-40 2
a [=

50—+ —+20
|
0 80 90

Number of floors

Fig. 4. Running times and program size for the Lift example

6 Extensions

The class of specifications to which th&-synthesis algorithm is applicable is wider than
the limited form presented in Equation (1). The algorithm ba applied to any specifica-
tion of the form(AZ, ;) — (Aj—; ¥;), where eachp; and<; can be specified by an
LTL formula of the form] > ¢ for a past formulg. Equivalently, eackp; andi; should
be specifiable by a deterministic Buichi automaton. Thigasexample, the case of the
original version of the Arbiter, where the liveness conjgneere each a response formula
of the formJ(p — < q).

The way we deal with such a formula is to add to the game additicariables and a
transition relation which encodes the deterministic Bizzhiomaton. For example, to deal
with a formula](p — <> ¢), we add to the game variables a new Boolean varialléh
initial conditionz = 1, and add to the transition relatign the additional conjunct

¥ = (qVxA-p)

We replace in the specification the sub-formplgp — < ¢) by the conjunct] & . It
is not difficult to see that this is a sound transformatioraflif, the formuld] (p — < q)
is satisfied by a sequenesff there exists an interpretation of the variablevhich satisfies
the added transition relation and also equals 1 infinitelpyrtanes.

Indeed, the in Table 1 we present the performance resultgnofimg the Arbiter ex-
ample with the original specification, to which we applied #tbove transformation from
response to recurrence formulas. The first column preskatsesults, when the liveness
requirements are given as the recurrence formabg>(r; = ¢;). In the second col-
umn, we present the results for the case that we started héttotiginal requirements
O(r; — <>)gi, and then transformed them into recurrence formulas aouprd the
recipe presented above.

7 Conclusions

We presented an algorithm that solves realizability andhsgis for a subset afrL. For
this subset the algorithm works in cubic time. We also preskan algorithm which re-
duces the number of states in the synthesized module foratheetbat the specification is
stuttering insensitive.

| N|Recurrence Propertif@esponse Properties

4 0.09 0.33

6 0.06 0.89

8 0.13 1.77
10 0.2§ 3.04
12 0.48 4.92
14 0.87 7.30
16 1.16 10.57
18 1.5 15.05
20 1.89 20.70
25 3.03 43.69
30 4.64 88.19
35 6.78 170.5(
40 9.50 317.33

Table 1. Experiments for Arbiter

We have shown that the approach can be applied to wide clagsrofilas, which
covers the full set of generalized reactivity[1] propestiée expect both the system and
the environment to be realized by hardware designs. Thagethporal semantics of both
the system and the environment have a specific form and thicatipn between the two
falls in the set of formulas that we handle. Generalizedtigfg1] certainly covers all
the specifications we have so far considered in the ProsyjdqirdVe believe that modi-
fications similar to the ones described in Section 6 wouldramigh to allow coverage of
specifications given in languages suctpas or FORSPEJAO04,AFF02].

8 Acknowledgments

We thank P. Madhusudan for suggesting that enumeratingtéitessof the controller may be very
inefficient.

References

[AFFT02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, Takza, A. Landver, S. Mador-
Haim, E. Singerman, A. Tiemeyer, M. Vardi, and Y. Zbar. TheSf®ec temporal logic: A
new temporal property-specification language8th TACAS LNCS 2280, 2002.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Quiier synthesis for timed automata.
In IFAC Symposium on System Structure and Conpafjes 469—-474. Elsevier, 1998.

[AO04] Inc. Accellera Organization. Formal semantics ot@lbera(c) property specification lan-
guage. Appendix B of http://www.eda.org/vfv/docs/PSLavfdf, January 2004.

[ATO4] R. Alur and S. La Torre. Deterministic generators @aanes for LTL fragmentsACM
Trans. Comput. Log5(1):1-25, 2004.

[BL69] J.R. Bichi and L.H. Landweber. Solving sequentiahditions by finite-state strategies.
Trans. Amer. Math. Sacl38:295-311, 1969.

[Bry86] R.E.Bryant. Graph-based algorithms for Booleanction manipulation|EEE Transac-
tions on ComputersC-35(12):1035-1044, 1986.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthessyo€hronization skeletons using
branching time temporal logic. IRroc. IBM Workshop on Logics of Programslume
131 ofLect. Notes in Comp. Sgpages 52—71. Springer-Verlag, 1981.

[Chu63] A. Church. Logic, arithmetic and automataPhoc. 1962 Int. Congr. Mathpages 23-25.

[EL86] E.A.Emerson and C. L. Lei. Efficient model-checkimgfiagments of the propositional
modalu-calculus. InProc. First IEEE Symp. Logic in Comp. S@ages 267—-278, 1986.

[Eme97] E.A. Emerson. Model checking and tlxalculus. In N. Immerman and Ph.G. Kolaitis,
editors,Descriptive Complexity and Finite Modelsages 185-214. AMS, 1997.

[Koz83] D. Kozen. Results on the propositionaicalculus. Theoretical Computer Science
27:333-354, 1983.

[KPOO] Y. Kesten and A. Pnueli. Verification by augmentedtéiny abstractionInf. and Comp.
163:203-243, 2000.

[KPPO5] Y. Kesten, N. Piterman, and A. Pnueli. Bridging tlae dpetween fair simulation and trace
inclusion. Inf. and Comp.200(1):36—-61, 2005.

[Lic91] O. Lichtenstein. Decidability, Completeness, and Extensions of Linear Tieraporal
Logic. PhD thesis, Weizmann Institute of Science, 1991.

[MW84] Z. Manna and P. Wolper. Synthesis of communicatingcpsses from temporal logic
specificationsACM Trans. Prog. Lang. Sy$:68-93, 1984.

[PR89a] A.Pnueliand R. Rosner. On the synthesis of a reaatadule. InProc. 16th ACM Symp.
Princ. of Prog. Lang.pages 179-190, 1989.

[PR89b] A. Pnueli and R. Rosner. On the synthesis of an asgnohlis reactive module. Froc.
16th Int. Collog. Aut. Lang. Progvolume 372 ofLect. Notes in Comp. Scpages 652—
671. Springer-Verlag, 1989.

[PR90] A. Pnueli and R. Rosner. Distributed reactive systane hard to synthesize. Rroc.
31st IEEE Symp. Found. of Comp. Spages 746—757, 1990.

[PS96] A. Pnueli and E. Shahar. A platform for combining dethe with algorithmic verifi-
cation. InProc. 8" Intl. Conference on Computer Aided Verification (CAV:9&)lume
1102 ofLect. Notes in Comp. ScBpringer-Verlag, pages 184—-195, 1996.

[Rab72] M.O. Rabin.Automata on Infinite Objects and Churc’s Problerolume 13 ofRegional
Conference Series in Mathematidsmer. Math. Soc., 1972.

